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Abstract

In terms of the microstructure characteristics of polycrystalline ferroelectric ceramics, a statistical micromechanics

model is employed to predict the effective electroelastic properties of polycrystalline ferroelectric ceramics with ran-

domly oriented defects, such as voids and microcracks, by the method of Eshelby’s equivalent inclusion theory and

Mori–Tanaka’s mean field concept. The model incorporates the effects of crystallographic domain switching under

external mechanical or electric field and the randomly oriented defects on the macroscopic behaviors of the poly-

crystalline ferroelectric ceramics. The analytical predictions of BaTiO3 polycrystalline ceramics are shown that the

defects can enhance the effective piezoelectric properties but reduce the elastic properties, which are consistent with the

experimental results.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Below Curie temperature, a ferroelectric crystal
is composed of many regions, so-called domain,
which exhibits a uniform spontaneous electrical
polarization and strain field inside. For example,
in tetragonal crystals, there are two types of do-

main wall that is the interface between the two
adjacent domains existing: 180� and 90� domain
wall. A suitable applied external electrical or me-
chanical field can cause a complicated course of
180� or 90� domain nucleation and domain wall
motion, called domain switching. As a result of
domain switching, the polarization and strain of
individual grain change. An electrical field can re-
orient both 180� and 90� domain, but a mechanical
field only causes 90� domain switching. Only 90�
domain switching has an effect on strain. Due to
the particular microstructural 90� and 180� domain
switching, ferroelectric ceramics exhibit the in-
herent ability to convert electrical to mechanical
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energy or mechanical to electrical energy (Jaff
et al., 1971; Chueng and Kim, 1987; Zenon, 1994).
Recently, ferroelectric ceramics play more impor-
tant role in the applied functional ceramics since
more and more smart structures, such as ultra-
precise displacement transducers and actuators,
are mostly made of ferroelectric ceramics. Ferro-
electric ceramics have such a wide variety of ap-
plications that many researchers are interested in
investigating their production process and prop-
erties. Generally, ferroelectric ceramics are pre-
pared by sintering compressed powers of oxide,
leading to a polycrystalline microstructure, which
is a unpoled macroscopically isotropic ferroelectric
ceramic with a variety of defects, such as voids
(Chueng and Kim, 1987), after cooling below
Curie temperature. For unpoled ferroelectric ce-
ramics, the effective polarization of ferroelectric
crystallite, which is the vector sum of the polar-
ization of each domain in individual crystal, is
randomly arranged so as to show macroscopically
isotropic and non-piezoelectric. But after a suffi-
cient external electric field applied, the compli-
cated domain switching results in reorienting the
effective polarization of each crystal to be ap-
proximated to the applied electric field direction in
this way to minimize the body energy. After the
process of ‘‘poling’’ or ‘‘polarizing’’, the ferro-
electric ceramics can exhibit piezoelectric property
and be suitable for as functional materials. Do-
main switching is not only well-known to result in
a non-linear hysteretic phenomena (Cao and
Evans, 1993; Ansgar et al., 1996) but also create
large internal stress field, leading to intergranular
microcracking, which can degrade (or possibly
enhance) the macroscopic properties of the overall
ceramics (Kahn, 1985; Lynch et al., 1995; Zhang
et al., 1997). So a typical poled ferroelectric ce-
ramics usually contains a few of defects such as
voids and microcracks. Then their overall behav-
iors are directly related to the microstructure
characteristics of the materials, which are difficult
to be predicted. In theory, Deeg (1980), Wang
(1992a,b) and Benveniste (1992) independently
extended Eshelby’s classical work to a piezoelectric
ellipsoidal inclusion embedded in a piezoelectric
matrix. Marutak (1965), Benveniste and Dvorak
(1992), Dunn and Taya (1993a) and Wang (1994)

studied the effective properties of ideal fully bon-
ded piezoelectric ceramics without considering the
effect of the microstructural evolution inherent in
ferroelectric ceramics. In addition, Nan and Clarke
(1996) and Kuo and Huang (1997) analyzed the
effective modulus of fully bonded piezoelectric ce-
ramic, considering the effects of shape and orien-
tations of individual grains. Dunn and coworkers
(1993b, 1993c, 1995) adopted the micromechanical
method to predict effective modulus of unpoled
polycrystalline piezoelectric ceramic with defects.
They did not take the relative microstructure
evolution of ferroelectric ceramics into account.
Recently in order to consider the effects of the
microstructure evolution of ferroelectric ceramics,
Chen et al. (1997a,b) had established a mesoscopic
model and then used the micromechanics method
to study the constitutive behavior of monocrystal-
line and polycrystalline ferroelectrics. Hwang et al.
(1995) established a one-dimensional model to an-
alyze the relation between domain switching and
electroelastic properties for ferroelectric/ferroelas-
tic ceramics. In this paper, based on the micro-
structure-level evolution characteristics inherent in
the ferroelectric ceramics, we develop the Eshelby’s
model with Mori–Tanaka’s mean field theory and
statistical model to predict the effective electro-
elastic properties of polycrystalline ferroelectric
ceramics with randomly oriented defects such
as microcracks and voids. The proposed model
accounts for the influences of randomly oriented
defects and domain switching on the effective elec-
troelastic properties under the application of the
external field.

2. Fundamental formulations and notations

In absence of body forces or free charge, the
static elastic and electric field equations can be
given by the equations of elastic equilibrium and
Gauss’s law of electrostatics among the strain eij,
stress rij, electric field Ei, elastic displacement ui,
electric potential / and electric displacement Di as
follows:
Divergence equations:

rij;j ¼ 0
Di;j ¼ 0

ð1Þ
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Gradient equations:

eij ¼ 1
2
ðui;j þ uj;iÞ

Ei ¼ �/;i

ð2Þ

Constitutive equations:

rij ¼ Cijmnemn þ enij/;n

Di ¼ eimnemn � kin/;n

ð3Þ

where Cijmn is the elastic modulus (measured in
constant electric field), enij is the piezoelectric
modulus (measured at a constant strain or electric
field), and kin is the dielectric modulus (measured
at a constant strain), respectively.
Based on the notation introduced by Barnett

and Lothe (1975), we can conveniently represent
the above equations in a simply form as

ZMn ¼
emn M ¼ 1; 2; 3
/;n M ¼ 4

�
ð4Þ

where ZMn is derived from UM given by

UM ¼ um M ¼ 1; 2; 3
/ M ¼ 4

�
ð5Þ

Similarity the stress and electric displacement are
represented as

Ri;J ¼
rij J ¼ 1; 2; 3
Di J ¼ 4

�
ð6Þ

The electroelastic modulus can then be represented
as

EiJMn ¼

Cijmn J ;M ¼ 1; 2; 3
enij J ¼ 1; 2; 3; M ¼ 4
eimn J ¼ 4; M ¼ 1; 2; 3
�kin J ;M ¼ 4

8>><
>>:

ð7Þ

Noted that the ‘‘inverse’’ of EiJMn is defined as FAbiJ ,
evidently both EiJMn and FAbiJ are diagonally sym-
metric for transversely isotropic piezoelectric ce-
ramics.
In order to be convenient to derive the equa-

tions, we can represent Eqs. (4)–(7) as 9� 1 and
9� 9 matrices by utilizing the mapping of adjacent
indices, e.g. ðiJÞ ¼ ðJiÞ and ðMnÞ ¼ ðnMÞ for J and
M 6¼ 4:

ð11Þ ! 1; ð22Þ ! 2; ð33Þ ! 3; ð23Þ ! 4;

ð13Þ ! 5; ð12Þ ! 6; ð14Þ ! 7; ð24Þ ! 8;

ð34Þ ! 9

Based upon the mapping, we can simplify those
mentioned expressions as matrixes in order to in-
duce conveniently in the next section. So the con-
stitutive relations can be represented as matrixes:

R9�1 ¼ E9�9Z9�1
Z9�1 ¼ F9�9R9�1

3. The Eshelby–Mori–Tanaka theory for polycrys-
talline ferroelectric ceramics with randomly ar-

ranged defects

3.1. A statistical micromechanics model

Since the ferroelectric ceramics have the par-
ticular microstructure domain, and individual
crystal consists of many domains below Curie
temperature, we can regard the effective polariza-
tion of individual crystal as the vector sum of each
domain inside it. At room temperature, for un-
poled ferroelectric ceramics with randomly ori-
ented voids, the effective polarization of individual
grain randomly distributes, shown in Fig. 1(a).
When the ferroelectric ceramics subjected to a
strong electric field, all the domains switch (two
mechanism: nucleation and domain-wall motion)
so that the effective polarization of individual
grain would be approximated to the applied elec-
trical field direction in order to minimize the body
energy. In a consequence of domain switching,
large internal stress is generated around the grain
boundary and results in microcracking, shown in
Fig. 1(b). On the basis of the experimental obser-
vations of domain switching current, Merz (1956)
concluded that the domain switching is mostly a
nucleation problem. So, it is efficient to use the
Kolmogorov–Avrami (K–A) statistical theory to
describe the process of domain switching. Thus,
the probability of domain switching (nucleation)
along the direction of applied electric field can be
obtained by the experimental results (Merz, 1956;
Xu, 1991):
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P ¼ P0 exp
�
� b

E

�
ð8Þ

where, b is the threshold value of activate electric
field. For a BaTiO3 ceramic, the threshold field b
along the poling direction is 470 kV/m. P0 is the
probability of domain switching under the action
of infinite external electric field Ei ði ¼ x; y or zÞ.
The probability of domain switching determined
by Eq. (8) only depends on the applied electric
field. Under the action of the external mechanical
field, we can roughly ‘‘transfer’’ the applied me-
chanical field into the relative electric field through
the piezoelectric constitutive equations in order to
use Eq. (8).
By means of Eshelby’s equivalent inclusion

principle, we regard the newly switched grain due
to the external electric or mechanical field and the
spatially distributed defect as composed of two
phase inclusions (r ¼ 1; 2) and the initially poled
ceramics (matrix). Then, the mean field of the
matrix with electroelastic modulus Em may differ
from R0 by a disturbed field R1, given by

Rm ¼ R0 þ R1 ¼ EmðZ0 þ Z1Þ ð9Þ

where R1; Z1 are the average disturbance fields due
to the presence of piezoelectric inhomogeneities
and the interactions among the inclusions.
For the first phase inclusion, the newly switched

crystals, with electroelastic constant E1, occupy a
region X1. Due to their local coordinate system
consistent with the fixed or material coordinate
system as a consequence of domain switching, we
can represent the electroelastic field in the newly
switched crystal as

R1 ¼ R0 þ R1 þ Rpt1

¼ E1ðZ0 þ Z1 þ Zpt1 � Z	
1Þ

¼ EmðZ0 þ Z1 þ Zpt1 � Z	
1 � Z		

1 Þ ð10Þ

where Zpt1 represents the perturbation of the strain
and electric fields in the newly switched crystal
with respect to those in the matrix. Z	

1 is the
spontaneous eigenfield: strain and electric field and
Z		
1 is the fictitious eigenfield due to the inhomo-
geneity.
For the second phase inclusion, defects, are

spatially distributed in the matrix and occupy
the region X2, we can also express the electrical
and mechanical field in the defect by the way of

Fig. 1. The model showing the unpoled (a), poled (b) ceramics and individual domain switching under the action of external field.
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Eshelby’s equivalent inclusion theory in the local
coordinate system:

RL2 ¼ R0L þ R1L þ RptL2 ¼ 0
¼ EmðZ0L þ Z1L þ ZptL2 � Z	L

2 Þ ð11Þ

where the superscript ‘L’ denotes the local coor-
dinate system. For the randomly arranged defects,
we can assume that the fixed coordinate system is
denoted as (x1; x2; x3). The local coordinate system
can be established by (xL1 ; x

L
2 ; x

L
3 ), x

L
3 is the sym-

metric axis like fixed coordinate and let xL1 lies in
(x1; x2) plane with no loss in generality, as shown in
Fig. 1. Then, we can obtain the transformed ma-
trix T from fixed to local coordinate system:

Tij ¼
cos a sin a 0

� sin a cos b cos a cos b sin b
sin a sin b � sin b cos a cos b

2
4

3
5

then

eLij ¼ TimTjnemn

ELi ¼ TinEn

ð12Þ

Reducing Eq. (12) can lead to the matrix form:

ZL ¼ ½A�Z ð13Þ

where ½A� is the transformed matrix from fixed to
local coordinate system.
In accordance with the electroelastic Eshelby’s

tensor S derived from Wang (1992a)’s three-
dimensional solution of an ellipsoidal inclusion
in a piezoelectric material (see Appendix A), Zptr ,
the disturbed field about two phase ðr ¼ 1; 2Þ, can
be obtained:

Zpt1 ¼ S1ðZ	
1 þ Z		

1 Þ
ZptL2 ¼ S2Z	L

2

ð14Þ

Further by the transformed matrix,

Zpt2 ¼ ½A��1S2½A�Z	
2 ð15Þ

Substitution of Eq. (14) into Eqs. (10) and (11)
yields:

Z		
1 ¼ ½E1S1 � EmðS1 � IÞ��1ðEm � E1Þ

� ½Z0 þ Z1 þ ðS1 � IÞZ	
1 � ð16aÞ

Z	L
2 ¼ �ðS2 � IÞ�1ðZ0L þ Z1LÞ ð16bÞ

On the basis of the transformed principle, we can
lead to

Z	
2 ¼ �½A��1ðS2 � IÞ�1½A�ðZ0 þ Z1Þ ð17Þ

3.2. Traction–electric displacement prescribed
boundary condition

When subjected to a far-field traction and
electric displacement, R0ijni, on the boundary with
outward unit normal vector ni, the average field
of overall ceramic can be obtained by the Mori–
Tanaka’s mean field approach:

hRi ¼ 1

V

Z
D�X1�X2

Rm dvþ
1

V

Z
X1

R1 dvþ
1

V

Z
X2

R2 dv

¼ R0 ¼ 1

V

Z
D�X1�X2

EmðZ0 þ Z1Þdv

þ 1

V

Z
X1

EmðZ0 þ Z1 þ Zpt1 � Z	
1 � Z		

1 Þdv

þ 1

V

Z
X2

EmðZ0 þ Z1 þ Zpt2 � Z	
2Þdv ð18Þ

then,

0 ¼ 1

V

Z
D�X1�X2

EmZ1 dv

þ 1

V

Z
X1

EmðZ1 þ Zpt1 � Z	
1 � Z		

1 Þdv

þ 1
v

Z
X2

EmðZ1 þ Zpt2 � Z	
2Þdv ð19Þ

Since the defects are three-dimensional randomly
distributed in the matrix, the distribute functions
of the defects can be obtained by f ¼ ð1=2pÞ sin b,
then Z1 can be deduced to

Z1 ¼ �v1ðS1 � IÞðZ	
1 þ Z		

1 Þ � v2hZpt2 � Z	
2i ð20Þ

where

hZpt2 � Z	
2i ¼

1

2p

Z p

0

Z p

0

sin b½A��1ðS2 � 1Þ

� ½A�Z	
2 dbda ð21aÞ

hZ	
2i ¼

1

2p

Z p

0

Z p

0

sin bZ	
2 dbda ð21bÞ
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Combining Eq. (17), (20) and (21a) and (21b) leads
to

Z1 ¼ 1

ð1� v2Þ
½Z0 � v1ðS1 � IÞðZ	

1 þ ðZ		
1 Þ� ð22Þ

Substituting Eq. (22) into Eq. (16a) can yield

Z		
1 ¼ E1S1


� EmðS1 � IÞ þ v1

1� v2

� Emð � E1ÞðS1 � IÞ
��1

ðEm � E1Þ

� 1

1� v2
Z0


þ 1� v1 � v2

1� v2
ðS1 � IÞZ	

1

�
ð23Þ

Based on Eq. (17), (22) and (23), it is easy to derive
the expression of Z	

2 .
On the other hand, the overall strain and elec-

tric field denoted by hZi can be obtained as the
weighted average of over each phase:

hZi ¼ 1

V

Z
D�X1�X2

ðZ0


þ Z1Þdv

þ
Z

X1

ðZ0 þ Z1 þ Zpt1 � Z	
1Þdv

þ
Z

X2

ðZ0 þ Z1 þ Zpt2 Þdv
�

¼ Z0 þ v1Z		 þ v2hZ	
2i ð24Þ

If it is assumed that there are total N potential
switching grains in volume V, the average number
n of the newly switched grain for a given electrical
or mechanical field:

n ¼ N � P ð25Þ

where P is defined in Eq. (8).
So the volume fraction v1 of the newly switched

grain along the direction of the applied or equiv-
alent electric field can be obtained by

v1 ¼ n � v=V ¼ N � P � v=V ¼ v01 � P ð26Þ

where v01 is the volume fraction of all the potential
switchable crystals and v is the volume of indi-
vidual crystal.
Now combining Eqs. (21a)–(24) and (26), we

can obtain the expression for the effective electro-
elastic behavior and effective constant E	, consid-

ering the particular microstructure-level evolution
of ferroelectric ceramics as following:

hRi ¼ E	hZi ¼ R0 ð27Þ

3.3. Elastic displacement–electric field prescribed
boundary condition

Let the ferroelectric ceramics be subjected to a
far-field applied elastic displacement and electric
field Z0mn, in terms of the Mori–Tanaka’s mean field
concept, the overall average electric field and strain
field can be obtained as

Z0 ¼ 1

V

Z
D�X1�X2

ðZ0 þ Z1Þdv

þ 1

V

Z
X1

ðZ0 þ Z1 þ Zpt1 � Z	
1Þdv

þ 1

V

Z
X2

ðZ0 þ Z1 þ Zpt2 Þdv

Based on Eqs. (14), (15) and (17), we can obtain:

Z1 ¼ ðI � v2BÞ�1½v2BZ0 � v1ðS1 � IÞZ	
1 � v1S1Z		

1 �
ð28Þ

where

B ¼ � 1

2p

Z p

0

Z p

0

sin b½A��1S2ðS2 � IÞ�1½A�dbda

Combining Eqs. (16a) and (28) leads to

Z		
1 ¼ ½E1S1 � EmðS1 � IÞ þ v1ðEm � E1Þ

� ðI � v2BÞ�1S1��1ðEm � E1Þ
� f½I þ v2ðI � v2BÞ�1B�Z0

þ ½I � v1ðI � v2BÞ�1�ðS1 � IÞZ	
1g ð29Þ

The overall stress and electric displacement of ce-
ramic, hRiji, can be obtained in a manner as the
definition of Eq. (24) as

hRi ¼ 1

V

Z
D�X1�X2

Rm dvþ
1

V

Z
X1

R1 dv

þ 1

V

Z
X2

R2 dv
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Then, the effective properties of stress and elec-
tric displacement of overall ceramics can be shown
as

hRi ¼ EmðZ0 � v1Z		
1 � v2hZ	

2iÞ ð30Þ

Thus, we can present the effective electroelastic
properties of polycrystalline ferroelectric ceramics
as

hZi ¼ F 	hRi ¼ Z0 ð31Þ

It is well known that the poled ferroelectric ce-
ramic is transversely isotropic with the x3-axis
being the poling axis. Generally, the crystal of
commercially valuable ferroelectric ceramics be-
longs to the class 6 mm or 4 mm symmetry, which
exhibits transversely isotropic properties. Since
Dunn and Taya (1993c) has shown that the shape
of domains (inclusions) has relatively little influ-
ence on the macroscopic behavior of the ferro-
electric ceramics, it is reasonable to assume the
shape of the crystal as spheroidal for mathematical
convenience in theory. As he previously men-
tioned, the newly switched crystals are arranged in
such way their symmetric axes are in parallel with
the x3-axis. Therefore, in the case of only consid-
ering randomly oriented defects, it is easy to show
that the effective ceramics are also transversely
isotropic with the x3-axis to be the symmetric axis.
Thus, the effective electroelastic modulus E	 and
F 	 predicted by the proposed model are also di-
agonal symmetry.

4. Numerical examples and discussion

In this section, we will use the presented model
to predict the effective properties of BaTiO3 ce-
ramics, which were discovered and applied in the
engineering field as functional materials early. Jaff
et al. (1971) had measured the elastic, dielectric
and piezoelectric coefficients of single-crystal and
polycrystalline ceramics of BaTiO3, shown in
Table 1. At the room temperature, the tetragonal
phase of BaTiO3 with the cell parameters
a ¼ 3:992 �AA and c ¼ 4:032 �AA has the spontaneous
polarization Ps ¼ 0:26 C/m2 and the remanent

polarization Pr ¼ 0:08 C/m2. Therefore, the eigen-
strain and eigenelectric displacement of a single-
crystal can be given:

e	 ¼
�0:005 0 0

0 �0:005 0

0 0 0:01

2
64

3
75

D	 ¼ 0 0 0:26½ �T

In terms of the material electroelastic coefficients
shown in Table 1 and the threshold field b is 470
kV/m, the effective properties of polycrystalline
BaTiO3 ceramics with three-dimensional distrib-
uted penny-shape defects are predicted by using
Eqs. (27) and (31) on the assumption of spherical
crystal. In order to utilize the experimental results
of BaTiO3 and simplify the calculation process, we
only consider two cases of the applied external
fields: (1) an applied electric field E3 along the
poling direction, (2) the compressive stress
r11 ¼ r22 which can be transferred to the equiva-
lent electric field along the poling direction by the
constitutive relationship. Fig. 2 shows the effective
piezoelectric modulus d33 as a function of the ap-
plied external field E3 and the volume fraction v2 of
defects. From Fig. 2, it is evident that the value of
d33 increases with increasing the volume fraction v2
of defects in any case. Fig. 2 also presents that the

Table 1

The elastic, piezoelectric and dielectric coefficients of BaTiO3 at

25� (Jaff et al., 1971)

Single-crystal Ceramic

CE
11 (GPa) 275 166

CE
33 (GPa) 164.8 162

CE
44 (GPa) 54.3 43

CE
12 (GPa) 178.9 77

CE
13 (GPa) 151.6 78

e31 (C/m2) �2.69 �4.4
e33 (C/m2) 3.65 18.6

e15 (C/m2) 21.3 11.6

k11 � 10�9 C2 N�1 m�2 17.4 11.2

k33 � 10�9 C2 N�1 m�2 0.96 12.6

d31 � 10�12 C/N �34.5 �79
d33 � 10�12 C/N 85.6 191

d15 � 10�12 C/N 392 270
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Fig. 2. The effects of the external applied electrical, mechanical field and the volume fraction v2 of defects on effective piezoelectric
modulus d33 of BaTiO3 ceramics.
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Fig. 3. Influences of the external applied electrical, mechanical field and volume fraction v2 of defects on effective piezoelectric modulus
d31 of BaTiO3 ceramics.
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Fig. 4. The effects of the external applied electrical and mechanical field, volume fraction v2 of defects on effective compliance constant
S13 of BaTiO3 ceramics.
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effective piezoelectric modulus d33 decreases non-
linearly when the external applied electric or
compressive stress field increases. Moreover, as the
applied stress reaches a sufficiently strong value,
d33 would become zero in a sense. These results can
be interpreted as the effects of microstructure
evolution under the application of external field:
an electric field can cause both 180� and 90� do-
main switching; But mechanical field can only re-
orient 90� domain. Thus, all the 90� domains
would be reoriented under the action of the en-
ough large mechanical field. Even a strong applied
electric field only causes 180� domain reoriented,
which do not result in the strain change. Accord-
ing to the definition of d33: d33 ¼ oe33=oE3, d33
would approach to zero by the definition theoret-
ically. Simultaneously, while a sufficiently strong
electric field reorients all the potential switchable
domains, the ceramics would exhibit linear elas-
ticity properties as well as the experimental ob-
servation (Cao and Evans, 1993). Fig. 3 gives the
effective piezoelectric modulus of d31 as a function
of external field and the volume fraction v2 of de-
fects. It is seen that the presence of defects can
improve the piezoelectric modulus d31 in a sense.
And, d31 increases non-linearly as the applied ex-
ternal electrical or mechanical field increases. Ad-
ditionally, Fig. 4 shows the compliance constant
changes with the applied external field E3 and the
volume fraction v2 of defects. The compliance
constant S13 decreases non-linearly by the volume
fraction v2 of defects increasing in any case. But
while the applied electric field reaches a sufficiently
high value, the effect of the volume fraction v2 of
defects on the compliance constant is similar to
that of linear elastic material. Since a sufficiently
strong electrical field has caused all the 180� and
90� domains switching, the ceramics would not
exhibit piezoelectric properties but like the normal
linear elastic material. These predictions confirm
the fact that the overall macroscopic behavior of
ferroelectric ceramics are associated with the mi-
crostructure-level evolution and agree well with
the experimental results: The elastic properties of
the polycrystalline ferroelectric ceramics decrease
but enhance the piezoelectric properties due to the
presence of defects (Kahn, 1985; Dunn and Taya
(1993a,b,c); Dunn, 1995).

5. Conclusion

In accordance with polycrystalline ferroelectric
ceramics microstructural evolution phenomena
and classical nucleation theory, we establish a
micromechanic model to investigate the effects of
external field inducing domain switching and
randomly distributed defects on the effective elec-
troelastic properties of polycrystalline ferroelectric
ceramics. In the procedure of solution, we adopt
Wang (1992a)’s three-dimensional solutions for an
ellipsoidal piezoelectric inclusion in piezoelectric
materials and Eshelby–Mori–Tanaka’s method.
For example, the effective electroelastic behavior
and constants of BaTiO3 ceramics with randomly
oriented defects are numerically analyzed. These
results confirm that the defect can enhance the
piezoelectric properties but decrease the elastic
properties of ferroelectric ceramics. The predic-
tions are in agreement with the experimental re-
sults.
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Appendix A

The electroelastic Eshelby tensors S can be
obtained on the basis of Wang (1992a)’s three-
dimensional solution of a spheroidal inclusion in a
piezoelectric material in the following form:

S ¼

S11 S12 S13 S14 S15 0 0 0 S19
S21 S22 S23 S24 S25 0 0 0 S29
S31 S32 S33 S34 S35 0 0 0 S39
S41 S42 S43 S44 S45 0 0 S48 0
S51 S52 S53 S54 S55 0 S57 0 0
0 0 0 0 0 S66 0 0 0
0 0 0 0 S75 0 S77 0 0
0 0 0 S84 0 0 0 S88 0
S91 S92 S93 0 0 0 0 0 S99

2
6666666666664

3
7777777777775

The non-zero components of matrix ½S� are pre-
sented as following:
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S11 ¼
1

4p
ðC011N 1

1111 þ C112N
1
1212 þ C031N

1
1313 þ e031N

2
113Þ

S12 ¼
1

4p
ðC012N 1

1111 þ C022N
1
1212 þ C032N

1
1313 þ e032N

2
113Þ

S13 ¼
1

4p
ðC013N 1

1111 þ C023N
1
1212 þ C033N

1
1313 þ e033N

2
113Þ

S14 ¼
1

4p
e024N

2
113

S15 ¼
1

4p
e015N

2
113

S19 ¼ � 1

4p
ðe031N 1

1111 þ e032N
1
1212 þ e033N

1
1313 � k033N

2
113Þ

S21 ¼
1

4p
ðC011N 1

2121 þ C021N
1
2222 þ C031N

1
2323 þ e031N

2
223Þ

S22 ¼
1

4p
ðC012N 1

2121 þ C021N
1
2222 þ C032N

1
2323 þ e032N

2
223Þ

S23 ¼
1

4p
ðC013N 1

2121 þ C023N
1
2222 þ C033N

1
2323 þ e033N

2
223Þ

S24 ¼
1

4p
e024N

2
223

S25 ¼
1

4p
e015N

2
223

S29 ¼ � 1

4p
ðe031N 1

2121 þ e032N
1
2222 þ e033N

1
2323 � k033N

2
223Þ

S31 ¼
1

4p
ðC011N 1

3131 þ C021N
1
3232 þ C031N

1
3333 þ e031N

2
333Þ

S32 ¼
1

4p
ðC012N 1

3131 þ C022N
1
3232 þ C032N

1
3333 þ e032N

2
333Þ

S33 ¼
1

4p
ðC013N 1

3131 þ C023N
1
3232 þ C033N

1
3333 þ e033N

2
333Þ

S34 ¼
1

4p
e024N

2
333

S35 ¼
1

4p
e015N

2
333

S39 ¼ � 1

4p
ðe031N 1

3131 þ e032N
1
3232 þ e033N

1
3333 � k033N

2
333Þ

S41 ¼
1

8p
e031N

2
322

S42 ¼
1

8p
e032N

2
322

S43 ¼
1

8p
e033N

2
322

S44 ¼
1

4p
½C044ðN 1

3232 þ N 1
3322 þ N 1

2323 þ N 1
2233Þ

þ e024ðN 2
232 þ N 2

322Þ�

S45 ¼
1

4p
e015N

2
322

S48 ¼ � 1

8p
½e024ðN 1

3232 þ N 1
3322 þ N 1

2332 þ N 1
2233Þ

� k022ðN 2
232 þ N 2

322Þ�

S51 ¼
1

8p
e031N

2
311

S52 ¼
1

8p
e032N

2
311

S53 ¼
1

8p
e033N

2
311

S54 ¼
1

4p
e024N

2
311

S55 ¼
1

4p
½C055ðN 1

1133 þ N 1
1313 þ N 1

3113 þ N 1
3311Þ

þ e015ðN 2
311 þ N 2

131Þ�

S57 ¼ � 1

8p
½e015ðN 1

1133 þ N 1
1313 þ N 1

3113 þ N 1
3311Þ

� k011ðN 2
311 þ N 2

131Þ�

S66 ¼
1

4p
C066ðN 1

1122 þ N 1
1221 þ N 1

2112 þ N 1
2211Þ

S75 ¼ � 1

2p
½C013ðN 2

311 þ N 2
131Þ þ e015N

3
11�
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S77 ¼
1

4p
½e015ðN 2

311 þ N 2
131Þ � k011N

3
11�

S84 ¼ � 1

2p
½C044ðN 2

322 þ N 2
232Þ þ e024N

3
22�

S88 ¼
1

4p
½e024ðN 2

322 þ N 2
232Þ � k022N

3
22�

S91 ¼ � 1

4p
ðC011N 2

113 þ C012N
2
223 þ C031N

2
333 þ e031N

3
33Þ

S92 ¼ � 1

4p
ðC012N 2

113 þ C022N
2
223 þ C032N

2
333 þ e032N

3
33Þ

S93 ¼ � 1

4p
ðC013N 2

113 þ C023N
2
223 þ C033N

2
333 þ e033N

3
33Þ

S99 ¼
1

4p
ðe031N 2

113 þ e032N
2
223 þ e033N

2
333 � k033N

3
33Þ

where the results of N 1, N 2 and N 3 have been
shown in Wang (1992a,b).
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